Racks, Leibniz algebras and Yetter–Drinfel'd modules
نویسندگان
چکیده
منابع مشابه
Racks, Leibniz algebras and Yetter–Drinfel’d modules
A Hopf algebra object in Loday and Pirashvili’s category of linear maps entails an ordinary Hopf algebra and a Yetter–Drinfel’d module. We equip the latter with a structure of a braided Leibniz algebra. This provides a uni ed framework for examples of racks in the category of coalgebras discussed recently by Carter, Crans, Elhamdadi and Saito.
متن کاملLeibniz Algebras, Lie Racks, and Digroups
The “coquecigrue” problem for Leibniz algebras is that of finding an appropriate generalization of Lie’s third theorem, that is, of finding a generalization of the notion of group such that Leibniz algebras are the corresponding tangent algebra structures. The difficulty is determining exactly what properties the generalization of group should have. Here we show that Lie racks, smooth left dist...
متن کاملLeibniz Algebras and Lie Algebras
This paper concerns the algebraic structure of finite-dimensional complex Leibniz algebras. In particular, we introduce left central and symmetric Leibniz algebras, and study the poset of Lie subalgebras using an associative bilinear pairing taking values in the Leibniz kernel.
متن کاملJournal of Lie Theory c ○?? Heldermann Verlag Berlin Leibniz algebras, Lie racks, and digroups
The “coquecigrue” problem for Leibniz algebras is that of finding an appropriate generalization of Lie’s third theorem, that is, of finding a generalization of the notion of group such that Leibniz algebras are the corresponding tangent algebra structures. The difficulty is determining exactly what properties this generalization should have. Here we show that Lie racks, smooth left distributive...
متن کاملCup-product for Leibniz Cohomology and Dual Leibniz Algebras
For any Lie algebra g there is a notion of Leibniz cohomology HL(g), which is defined like the classical Lie cohomology, but with the n-th tensor product g⊗n in place of the n-th exterior product Λ g. This Leibniz cohomology is defined on a larger class of algebras : the Leibniz algebras (cf. [L1], [L2]). A Leibniz algebra is a vector space equipped with a product satisfying a variation of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Georgian Mathematical Journal
سال: 2015
ISSN: 1072-947X,1572-9176
DOI: 10.1515/gmj-2015-0049